
International Journal of Theoretical Physics, Vol. 46, No. 8, August 2007 ( C© 2007)
DOI: 10.1007/s10773-006-9299-5

Erratum

Remarks on Causality in Relativistic
Quantum Field Theory
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It is shown that the correlations predicted by relativistic quantum field theory in lo-
cally normal states between projections in local von Neumann algebras A(V1),A(V2)
associated with spacelike separated spacetime regions V1, V2 have a (Reichenbachian)
common cause located in the union of the backward light cones of V1 and V2. Further
comments on causality and independence in quantum field theory are made.
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1. INTRODUCTION

Algebraic quantum field theory (AQFT) (cf. Haag, 1992) predicts correlations
between projections A,B lying in von Neumann algebrasA(V1),A(V2) associated
with spacelike separated spacetime regions V1, V2. According to Reichenbach’s
Common Cause Principle (cf. Salmon, 1984) if two events A and B are correlated,
then the correlation between A and B is either due to a direct causal influence
connecting A and B, or there is a third event C which is a common cause of the
correlation. The latter means that C satisfies four simple probabilistic conditions
which together imply the correlation in question.

The correlations predicted by AQFT lead naturally to the question of the
status of Reichenbach’s Common Cause Principle within AQFT. If the corre-
lated projections belong to algebras associated with spacelike separated regions, a
direct causal influence between them is excluded by the theory of relativity. Con-
sequently, compliance of AQFT with Reichenbach’s Common Cause Principle
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would mean that for every correlation between projections A and B lying in von
Neumann algebras associated with spacelike separated spacetime regions V1, V2,
there must exist a projection C possessing the probabilistic properties which qual-
ify it to be a Reichenbachian common cause of the correlation between A and B.
However, since observables and hence also the projections in AQFT must be local-
ized, one also has to specify the spacetime region V with which the von Neumann
algebra A(V ) containing the common cause C is associated. Intuitively, the region
V should be disjoint from both V1 and V2 but should not be causally disjoint from
them, in order to leave room for a causal effect of C on the correlated events. There
are three natural candidates for such a region V : the intersection of the backward
light cones of V1 and V2 (cpast(V1, V2), see (10)), the intersection of the backward
light cones of every point in V1 and V2 (spast(V1, V2), see (11)) and the union of
the backward light cones of V1 and V2 (wpast(V1, V2), see (9)). The requirement
that the common cause belongs to local algebras associated with spacetime regions
spast(V1, V2), cpast(V1, V2) and wpast(V1, V2), leads to three different specifica-
tions of Reichenbach’s Common Cause Principle in AQFT, called Strong Common
Cause Principle, Common Cause Principle and Weak Common Cause Principle,
respectively (Definition 3). Since spast(V1, V2) = ∅ if V1 and V2 are complemen-
tary wedge regions and AQFT predicts correlations between projections localized
in complementary wedges (see below), the Strong Common Cause Principle fails
in AQFT. Whether the Common Cause Principle holds is still an open problem.

We show that the Weak Common Cause Principle holds for every local
system (A(V1),A(V2), φ) with a locally normal and locally faithful state φ and
suitable, bounded spacelike separated spacetime regions V1, V2, if a net {A(V )}
satisfies some standard, physically natural assumptions as well as the so–called
local primitive causality condition (Definition 1). Such states include the states of
physical interest in vacuum representations for relativistic quantum field theories
on Minkowski space. We shall interpret our main result, Proposition 3, as a clear
demonstration that AQFT is a causally rich enough theory to comply with the Weak
Common Cause Principle – and possibly also with the Common Cause Principle.

In the next section we shall specify the assumptions and some immediate
consequences of these assumptions needed in the proof of the main result. In
Section 3 the definitions of the Reichenbach’s Common Cause Principles for
AQFT are given, followed by the main result. In the last section we shall make
some further comments about our results.

2. SPACELIKE CORRELATIONS IN QUANTUM FIELD THEORY

Throughout the paper {A(V )} denotes a net of local von Neumann algebras
(indexed by the open, bounded subsets V of Minkowski space M) satisfying the
standard axioms of (i) isotony, (ii) Einstein causality, (iii) relativistic covariance
and acting on a Hilbert space H carrying an irreducible vacuum representation of
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the net. The representation of the Poincaré group is therefore (iv) implemented by
a (strongly continuous) unitary representation U satisfying the spectrum condition
and having a distinguished invariant vector � ∈ H representing the vacuum state.
In addition to (i)–(iv), we also assume (v) weak additivity: for any nonempty open
region V , the set of operators ∪x∈IR4A(V + x) is dense in ∪V ⊂MA(V ) (in the weak
operator topology). (For further discussion of these axioms, see Haag (1992) and
Horuzhy (1990).)

An immediate consequence of assumptions (i)–(v) is that we may employ
the following result of Borchers:

Proposition 1. (Borchers, 1965) Under the assumptions (i)–(v), for any
nonempty open region V , the set of vectors A(V )� is dense in H, for any vector
� which is analytic for the energy.

Note that any vector � with finite energy content, in particular the vacuum, is
analytic for the energy. And since no preparation of a quantum system which can
be carried out by man can require infinite energy, it is evident that (convex com-
binations of ) states induced by such analytic vectors include all of the physically
interesting states in this representation.

Note further that assumption (ii) entails that such vectors are also separating
(i.e. X ∈ A(V ) and X� = 0 imply X = 0) for all algebras A(V ) such that V ′ is
nonempty. (Here V ′ denotes the causal complement and V ′′ = (V ′)′ denotes the
causal completion of a convex spacetime region V .) Hence, for each bounded
region V (convex combinations of ) the states φ induced by analytic vectors are
faithful on each such algebraA(V ) (i.e. X ∈ A(V ) and φ(XX∗) = 0 imply X = 0).
Such states are said to be locally faithful. We emphasize: given assumptions (i)–
(v), all physically interesting states in the vacuum representation will be locally
faithful.

We shall also assume that (vi) the net {A(V )} and state φ have a nontrivial
scaling limit, either in the sense of Fredenhagen (1985) or in the sense of Buchholz
and Verch (1996). This assumption has been verified in many concrete models and
is expected to hold in any renormalizable quantum field theory with an ultraviolet
fixed point, hence in all asymptotically free theories. The role of this physically
motivated assumption in our argument is to provide information about the type of
the local algebras A(V ) which can occur.

Definition 1. The net {A(V )} is said to satisfy the local primitive causality
condition if A(V ′′) = A(V ) for every nonempty convex region V .

Local primitive causality postulates that the quantum field undergoes a hyperbolic
propagation within lightlike characteristics (Haag and Schroer, 1962). (See the
discussion in Section 4 for further insight into the nature of this postulate.) Our
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final assumption is that the net satisfies local primitive causality. This assumption
does not follow from assumptions (i)–(vi) (see Garber, 1975). However, this
condition has been verified in many concrete models.

For spacetime point x ∈ M let V+(x) (V−(x)) denote the open forward (back-
ward) light cones with apex x. If x ∈ V+(y) then V−(x) ∩ V+(y) is called a double
cone. If V is a double cone, then V and V ′ are nonempty and V = V ′′. The wedge
regions are Poincaré transforms of the basic wedge

WR = {(x0, x1, x2, x3) ∈ M | x1 > |x0|}.
Note that wedges are unbounded sets and W = W ′′ for every wedge W . Moreover,
if W is a wedge, then so is W ′. As shown in Fredenhagen (1985), assumptions
(i)–(vi) entail that the algebra A(V ) is type III whenever V is a double cone or a
wedge.

We shall need some definitions and results concerning the independence
of local algebras.4 A pair (A1,A2) of C∗-subalgebras of the C∗-algebra C has
the Schlieder property if XY 	= 0 for any 0 	= X ∈ A1 and 0 	= Y ∈ A2. Given
assumptions (i)–(v), (A(V1),A(V2)) has the Schlieder property for all spacelike
separated double cones or wedges (Summers, 1990).

A pair (A1,A2) of such algebras is called C∗-independent if for any state φ1

on A1 and for any state φ2 on A2 there exists a state φ on C which extends both φ1

and φ2. Under assumptions (i)–(v), algebras associated with spacelike separated
double cones are C∗-independent, since they form a mutually commuting pair of
algebras satisfying the Schlieder property, which in this context is equivalent with
C∗-independence (Roos, 1970).

Two von Neumann subalgebras N1,N2 of the von Neumann algebra N are
called logically independent (Rédei, 1995a,b) if A ∧ B 	= 0 for any projections
0 	= A ∈ N1, 0 	= B ∈ N2. If (N1,N2) is a mutually commuting pair, then C∗-
independence and logical independence are equivalent (Rédei, 1998).5 So we
conclude:

Lemma 1. Assumptions (i)–(v) entail that the pair (A(V1),A(V2)) is logically
independent for any spacelike separated double cones or wedges V1, V2.

Let V1 and V2 be two spacelike separated spacetime regions and A ∈ A(V1)
and B ∈ A(V2) be two projections. If φ is a state on A(V1 ∪ V2) and

φ(A ∧ B) > φ(A)φ(B), (1)

4 For the origin and a detailed analysis of the interrelation of these and other notions of statistical
independence, see the review (Summers 1990) and Chapter 11 in Rédei (1998)—for more recent
results, see Florig and Summers (1997) and Hamhalter (1997).

5 If N1,N2 do not mutually commute, then C∗-independence is strictly weaker than logical indepen-
dence (Hamhalter, 1997).



Remarks on Causality in Relativistic Quantum Field Theory 2057

then we say that there is superluminal (or spacelike) correlation between A and
B in the state φ. We now explain why such correlations are common when
assumptions (i)–(v) hold.

The ubiquitous presence of superluminal correlations is one of the con-
sequences of the generic violation of Bell’s inequalities in AQFT. To make this
clear, recall (cf. Summers and Werner, 1985) that the Bell correlation β(φ,N1,N2)
between two commuting von Neumann subalgebras N1,N2 of the von Neumann
algebra N in state φ on N is defined by

β(φ,N1,N2) ≡ sup
1

2
φ(X1(Y1 + Y2) + X2(Y1 − Y2)), (2)

where the supremum in (2) is taken over all self–adjoint contractions Xi ∈
N1, Yj ∈ N2. It can be shown (Cirel’son, 1980; Summers and Werner, 1987a)
that β(φ,N1,N2) ≤ √

2. The Clauser–Holt–Shimony–Horne version of Bell’s
inequality in this notation reads:

β(φ,N1,N2) ≤ 1, (3)

and a state φ for which β(φ,N1,N2) > 1 is called Bell correlated. It is known
(Summers and Werner, 1987a) that if φ is a product state across the algebrasN1,N2

(i.e., if φ(XY ) = φ(X)φ(Y ), for all X ∈ N1 and Y ∈ N2), then β(φ,N1,N2) = 1.

Lemma 2. (Rédei and Summers, 2002) Let N1 and N2 be commuting subalge-
bras of the von Neumann algebra N and let φ be a normal state on N which is not
a product state across the algebras N1,N2. Then there exist projections A ∈ N1

and B ∈ N2 such that φ(A ∧ B) > φ(A)φ(B).

There are many situations in which β(φ,A(V1),A(V2)) = √
2 (cf. Summers

and Werner, 1987a; Summers and Werner, 1987b; Summers and Werner, 1988).
We recall a recent result by Halvorson and Clifton. Let the symbolN1 ∨ N2 denote
the smallest von Neumann algebra containing both N1 and N2.

Proposition 2. (Halvorson and Clifton, 2000) If (N1,N2) is a pair of commuting
type III von Neumann algebras acting on the Hilbert space H and having the
Schlieder property, then the set of unit vectors which induce Bell correlated states
on (N1,N2) is open and dense in the unit sphere of H. Indeed, the set of normal
states on N1 ∨ N2 which are Bell correlated on (N1,N2) is norm dense in the
normal state space of N1 ∨ N2.

We see then that, given the assumptions (i)–(vi), for any spacelike separated
double cones or wedges V1, V2, the pair (A(V1),A(V2)) satisfies the hypoth-
esis of Prop. 2. So, “most” normal states on such pairs of algebras manifest
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superluminal correlations (1). Hence, superluminal correlations abound in AQFT,
and the question posed in the introduction is not vacuous.

3. THE NOTION OF REICHENBACHIAN COMMON CAUSE IN AQFT

The following definition is a natural formulation in a noncommutative prob-
ability space (P(N ), φ)6 of the classical notion of common cause given by
Reichenbach (Reichenbach, 1956, Section 19).

Definition 2. Let A,B ∈ P(N ) be two commuting projections which are corre-
lated in φ:

φ(A ∧ B) > φ(A)φ(B). (4)

C ∈ P(N ) is a common cause of the correlation (4) if C commutes with both A

and B and the following conditions hold:

φ(A ∧ B|C) = φ(A|C)φ(B|C), (5)

φ(A ∧ B|C⊥) = φ(A|C⊥)φ(B|C⊥), (6)

φ(A|C) > φ(A|C⊥), (7)

φ(B|C) > φ(B|C⊥). (8)

(φ(X|Y ) denotes the conditional probability φ(X|Y ) = φ(X ∧ Y )/φ(Y ).)
For spacelike separated spacetime regions V1 and V2 let us define the following
regions

wpast(V1, V2) ≡ (BLC(V1) \ V1) ∪ (BLC(V2) \ V2), (9)

cpast(V1, V2) ≡ (BLC(V1) \ V1) ∩ (BLC(V2) \ V2), (10)

spast(V1, V2) ≡ ∩x∈V1∪V2BLC(x), (11)

where BLC(V ) denotes the union of the backward lightcones of every point in
V . Region spast(V1, V2) consists of spacetime points each of which can causally
influence every point in both V1 and V2; region cpast(V1, V2) consists of spacetime
points each of which can causally influence at least some point in both V1 and V2,
and region wpast(V1, V2) consists of spacetime points each of which can causally
influence at least some point in either V1 or V2.

Definition 3. Let {A(V )} be a net of local von Neumann algebras over Minkowski
space. Let V1 and V2 be two spacelike separated spacetime regions, and let φ be

6P(N ) is the set of all projections in the von Neumann algebra N .
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a locally normal state on the net. If for any pair of projections A ∈ A(V1) and
B ∈ A(V2) the inequality

φ(A ∧ B) > φ(A)φ(B) (12)

entails the existence of a projection C in the von Neumann algebra A(V ) which is
a common cause of the correlation (12) in the sense of Definition 2, then the local
system (A(V1),A(V2), φ) is said to satisfy the

Weak Common Cause Principle if V ⊆ wpast(V1, V2), (13)

Common Cause Principle if V ⊆ cpast(V1, V2), (14)

Strong Common Cause Principle if V ⊆ spast(V1, V2). (15)

We say that Reichenbach’s Common Cause Principle holds for the net (respectively
holds in the weak or strong sense) iff for every pair of spacelike separated convex
spacetime regions V1, V2 and every normal state φ, the Common Cause Principle
holds for the local system (A(V1),A(V2), φ) (respectively in the weak or strong
sense).
If V1 and V2 are complementary wedges then spast(V1, V2) = ∅. Since the local
von Neumann algebras pertaining to complementary wedges are known to contain
correlated projections (see Summers and Werner, 1988 and Summers, 1990), the
Strong Reichenbach’s Common Cause Principle trivially fails in AQFT.

The problem of whether the Common Cause Principle holds in AQFT was
raised in Rédei (1997), and the problem is still open. For the Weak Common Cause
Principle we have the following result.

Proposition 3. If the net {A(V )} satisfies conditions (i)–(vi) and local primitive
causality, then every local system (A(V1),A(V2), φ) with V1, V2 nonempty convex
open sets such that V1

′′ and V2
′′ are spacelike separated double cones and with

a locally normal and locally faithful state φ satisfies the Weak Common Cause
Principle.

The proof of Proposition 3 is based on the following two lemmas:

Lemma 3. Let φ be a faithful state on a von Neumann algebra N containing
two mutually commuting subalgebras N1,N2 which are logically independent.
Let A ∈ N1 and B ∈ N2 be projections satisfying (4). Then a sufficient condition
for C to satisfy (5)–(8) is that the following two conditions hold:

C < A ∧ B, (16)

φ(C) = φ(A ∧ B) − φ(A)φ(B)

1 − φ(A ∨ B)
. (17)
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Lemma 4. Let N be a type III von Neumann algebra on a separable Hilbert
space H, and let φ be a faithful normal state on N . Then for every projection
A ∈ P(N ) and every positive real number 0 < r < φ(A) there exists a projection
P ∈ P(N ) such that P < A and φ(P ) = r .

Due to space limitations, we must refer the reader to Rédei and Summers (2002)
for the proof of these assertions.

4. FINAL REMARKS

The local primitive causality condition plays an essential role in our proof of
Prop. 3 but is barely discussed in the literature. If V is a convex region, then for any
point x ∈ V ′′, every inextendible causal curve through x must intersect V . Hence,
the values of a classical quantum field satisfying a hyperbolic equation of motion
whose speed of propagation is bounded by that of light would at every point in V ′′

be completely determined by its values in V . This well-known state of affairs finds
an analogous expression in quantum field theory in the condition A(V ) = A(V ′′).
For free quantum fields there is an explicit link between the mentioned fact about
classical fields and the conditionA(V ) = A(V ′′)—cf. Glimm and Jaffe (1972). For
interacting quantum fields, the link is significantly more indirect, but has been ver-
ified in many concrete models—see again (Glimm and Jaffe, 1972) for references.
For this reason, workers in AQFT take the condition of local primitive causality in
general as an expression of hyperbolic propagation within lightlike characteristics.

The validity of the local primitive causality condition leads to some con-
sequences which are nonintuitive to many who are first exposed to its uses. In
particular, since it is clearly possible for two disjoint regions V1, V2 to be con-
tained in the casual completion V ′′ of a third region V , itself disjoint from V1 ∪ V2,
it is possible for a single element A ∈ A(V ′′) to be an element of both A(V1 ∪ V2)
and A(V ) and therefore to be localized in mutually disjoint regions.7 Since the
operational interpretation of a self-adjoint A ∈ A(V ) is that of an observable
measurable in V , this leads to some initial conceptual discomfort.

This discomfort is dissolved by noting that an “observable” A does not repre-
sent a unique measuring apparatus in some fixed laboratory, but rather represents
an equivalence class of such apparata (cf. Neumann and Werner, 1983). Consider
two such idealized apparata X, Y such that φ(X) = φ(Y ) for all (idealized) states
φ admitted in the theory (the set of such states contains as a subset—at least in
principle—all states preparable in the laboratory). These two apparata are then
identified to be in the same equivalence class and are thus represented by a single
operator A. Hence, the element A above, which is localized simultaneously in V

and V1 ∪ V2, represents two distinct events—one taking place in V and the other
taking place in V1 ∪ V2. The fact that it is possible, given any event in V1 ∪ V2,
to find an event in V which is equivalent to the first in the stated sense is part of

7 Indeed, this fact is essential in our proof of Prop. 3.
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the content of the local primitive causality condition. It is therefore of interest that
one can actually verify this condition in models.

Of further relevance to our purposes is the observation that the use of local
primitive causality leads to the conclusion that two correlated projections A,B

yield an infinity of events, each of which is localized in a manner disjoint from the
others and is a strong common cause of A and B in the sense of (16). Relativistic
quantum field theory is extremely rich in such strong common causes!

Proposition 3 locates the common cause C within the union of the backward
light cones of V1 and V2; however, a bit more can be said of its location. Define
Ṽ1 and Ṽ2 by

Ṽ1 ≡ (BLC(V1) ∩ V ) \ (BLC(V1) ∩ BLC(V2)) (18)

Ṽ2 ≡ (BLC(V2) ∩ V ) \ (BLC(V1) ∩ BLC(V2)) (19)

Since (Ṽ1 ∪ V1) and (Ṽ2 ∪ V2) are contained in spacelike separated double cones,
the algebras N (Ṽ1 ∪ V1) and N (Ṽ2 ∪ V2) are logically independent, hence the
common cause C < A ∧ B cannot belong to N (Ṽ1) or to N (Ṽ2) only, so neither
V ⊆ Ṽ1 nor V ⊆ Ṽ2 is possible.

Finally, we note that the existence of a common cause in the presence of
a violation of Bell’s inequalities may seem paradoxical, because the violation
of Bell’s inequalities is represented by some (see, e.g, van Fraassen, 1982) as
implying the nonexistence of a common cause. But there is no contradiction
here—it is essential to realize (cf. Rédei, 1997; Hofer-Szabó et al., 1999) that
Bell’s inequality involves four pairs of correlated projections. To show that Bell’s
inequality must hold, van Fraassen (1982) effectively assumes that all pairs have
the same common cause, i.e. a common common cause C. We have demonstrated
that a given pair of correlated projections has a common cause, not that some set of
four correlated pairs has a common common cause. Common common causes for
different correlations do not exist in general even in classical probability theory,
as shown in Hofer-Szabó et al. (2002).
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